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ABSTRACT

Given a countable Borel equivalence relation E on a Polish space, we show:

(1) E admits an endless graphing if and only if E is smooth; (2) E admits

a locally finite single-ended graphing if and only if E is aperiodic; (3) E

admits a graphing for which there is a Borel way of selecting two ends

from each component if and only if E is hyperfinite; and (4) E admits a

graphing for which there is a Borel way of selecting a finite set of at least

three ends from each component if and only if E is smooth.

1. Introduction

A topological space X is Polish if it is separable and completely metrizable. A

Borel equivalence relation E on X is countable if all of its classes are countable.

The descriptive set-theoretic study of such equivalence relations has blossomed

over the last several years (see, for example, Jackson-Kechris-Louveau [6]). A

Borel graph G on X is a graphing of E if its connected components coincide

with the equivalence classes of E. Here we study certain properties of graphings

that yield information about their underlying equivalence relations.

A ray through G is an injective sequence α ∈ XN such that

∀n ∈ N ((α(n), α(n + 1)) ∈ G ).

We use [G ]∞ to denote the standard Borel space of all such rays. A graph T

is a forest (or acyclic) if its connected components are trees. Although these
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trees are unrooted, we can nevertheless recover their branches as equivalence

classes of the associated tail equivalence relation ET on [G ]∞, given by

αET β ⇔ ∃i, j ∈ N ∀k ∈ N (α(i + k) = β(j + k)).

Generalizing this to graphs, we obtain the relation EG of end equivalence.

Two rays α, β through G are end equivalent if for every finite set S ⊆ X ,

there is a path from α to β through the graph G |(X \S). Equivalently, the rays

α, β are end equivalent if there is an infinite family {γn}n∈N of pairwise vertex

disjoint paths from α to β. An end of G is an equivalence class of EG .
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Figure 1. End-equivalent rays and the “infinite ladder” of paths

between them.

Our goal here is to explore the connection between countable Borel equiva-

lence relations and the ends of their graphings. In particular, we wish to under-

stand the relationship between the structure of a countable Borel equivalence

relation and the ability to select, in a Borel fashion, a given number of ends

from each component of one of its graphings.

It should be noted that questions similar to those we study here have been

studied in the measure-theoretic setting, e.g., in Adams [1], Blanc [2], Jackson-

Kechris-Louveau [6] and Paulin [13]. Although our primary motivation is de-

scriptive, all of our results imply their measure-theoretic counterparts.

In §2, we consider endless graphings, i.e., those which have no rays. Recall

that E is smooth if there are countably many E-invariant Borel sets Bn ⊆ X

such that

∀x, y ∈ X (xEy ⇔ ∀n ∈ N (x ∈ Bn ⇔ y ∈ Bn)).

Theorem A: Every Borel equivalence relation on a Polish space that admits

an endless graphing is smooth.

This can be viewed as a generalization of Theorem 4.20 of K lopotowski-

Nadkarni-Sarbadhikari-Srivastava [10], and can be used to affirmatively answer
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their Question 4.21 (although this question deals only with the case that E is

countable).

In §3, we make a brief detour to discuss the problem of finding spanning

subtreeings of graphings, which comes up in connection with the arguments of

§2. Although we certainly do not offer a general solution to this problem, we

do show:

Theorem B (Kechris-Miller): For n ∈ N, every locally countable Borel graph

on a Polish space admits a spanning Borel subgraph with no cycles of length

≤ n.

In §4, we turn our attention to graphings whose connected components each

have but one end. Such graphings are termed single ended. Recall that an

equivalence relation E is aperiodic if each of its equivalence classes is infinite.

Theorem C: Every aperiodic countable Borel equivalence relation on a Polish

space admits a locally finite single-ended graphing.

In §5, we consider graphings with the property that there is a Borel way

of selecting exactly two ends from each connected component. Recall that an

equivalence relation E is hyperfinite if it is the union of finite Borel equivalence

relations F0 ⊆ F1 ⊆ · · · ⊆ E. The following fact generalizes a theorem of Paulin

[13], which itself generalizes a theorem of Adams [1]:

Theorem D: Suppose that X is a Polish space, E is a countable Borel equiva-

lence relation on X , G is a graphing of E, and there is a Borel way of selecting

two ends from each G -component. Then E is hyperfinite.

In §6, we turn our attention to the selection of a finite number of ends,

generalizing a result of Blanc [2] which strengthens a result of Paulin [13]:

Theorem E: Suppose that X is a Polish space, E is a countable Borel equiva-

lence relation on X , G is a graphing of E, and there is a Borel way of selecting

a finite set of at least three ends from each G -component. Then E is smooth.

2. Endless graphings

As connected components of endless locally finite graphs are finite, only finite

Borel equivalence relations admit endless locally finite graphings. The following
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theorem implies that only smooth Borel equivalence relations admit endless

graphings.

Theorem 2.1: Suppose that X is a Polish space, E is a Borel equivalence

relation on X , G is a graphing of E, and B ⊆ X is a Borel subset of X

which intersects every ray through G in only finitely many points. Then E|B

is smooth.

Proof. Suppose, towards a contradiction, that E|B is non-smooth.

Lemma 2.2: There is a Borel set Y ⊆ X such that E|Y is a non-smooth

hyperfinite equivalence relation, G |Y is a graphing of E|Y , and B∩Y intersects

every equivalence class of E|Y .

Proof. As usual, we use E0 to denote the equivalence relation on 2N given by

xE0y ⇔ ∃n ∈ N ∀m ≥ n (x(m) = y(m)).

A reduction of E0 into E is an injection π : 2N → X such that

∀x, y ∈ 2N (xE0y ⇔ π(x)Eπ(y)).

As E is non-smooth, Theorem 1.1 of Harrington-Kechris-Louveau [4] ensures

that there is a continuous reduction π of E0 into E|B.

We use [G ]<∞ to denote the standard Borel space of G -connected finite sub-

sets of X . Let R denote the set of pairs (x, 〈Sk〉k∈N
) ∈ 2N × ([G ]<∞)N such

that:

1. ∀k ∈ N (π(x) ∈ Sk).

2. ∀y ∈ [x]E0 ∃k ∈ N (π(y) ∈ Sk).

It is clear that R is Borel, so the Jankov–von Neumann uniformization the-

orem (see, for example, §18 of Kechris [7]) ensures the existence of a σ(Σ1

1
)-

measurable function S : 2N → ([G ]<∞)N whose graph is contained in R. Let µ

denote the usual product measure on 2N.

Sublemma 2.3: There is a µ-conull Borel set A ⊆ 2N such that S|A is Borel.

Proof. Fix sets S0, S1, . . . generating the algebra of Borel subsets of ([G ]<∞)N,

and for each n ∈ N, fix Borel sets An ⊆ S−1(Sn) ⊆ Bn such that µ(Bn\An) = 0.

Now define A ⊆ 2N by

A = 2N \

(

⋃

n∈N

Bn \ An

)

,
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noting that A is µ-conull. As (S|A)−1(Sn) = S−1(Sn)∩A = An ∩A, it follows

that S|A is Borel.

As images of Borel sets under countable-to-one Borel functions are themselves

Borel (see, for example, §18 of Kechris [7]), it follows that the set

Y = {x ∈ X : ∃y ∈ A∃k ∈ N (x ∈ Sk(y))}

is Borel, and it is clear that G |Y is a graphing of E|Y . As the restriction of E0

to any µ-conull Borel set is non-smooth, it follows that E|(B∩Y ) is non-smooth

and hyperfinite, thus so is E|Y .

It is therefore enough to draw out a contradiction under the assumption that

E is hyperfinite. A treeing of E is a graphing of E which is a forest.

Lemma 2.4: Suppose that X is a Polish space, E is a hyperfinite equivalence

relation on X , and G is a graphing of E. Then G admits a spanning subtreeing.

Proof. Fix an increasing sequence F0 ⊆ F1 ⊆ · · · ⊆ E of finite Borel equivalence

relations such that F0 = ∆(X) and E =
⋃

n∈N
Fn. Recursively find a decreasing

sequence G = G0 ⊇ G1 ⊇ · · · of Borel graphs such that:

1. ∀n ∈ N ∀x ∈ X (Gn|[x]Fn
is a tree).

2. ∀n ∈ N (Fn ∩ (Gn \ Gn+1) = ∅).

Condition (1) ensures that the graph T =
⋂

n∈N
Gn is a forest and condition

(2) ensures that the injective T -path between any two E-equivalent points x, y

stabilizes at the first stage n for which xFny, thus T is a treeing of E.

It is therefore enough to draw out a contradiction under the additional as-

sumption that T = G is a treeing of E. We say that (x0, x1) ∈ T points

towards A ⊆ X if there is an injective T -path x0, x1, . . . , xn such that xn ∈ A.

Put B0 = B, set

Bα+1 = {x ∈ Bα : ∃y, z ∈ Tx (y 6= z and (x, y), (x, z) both point towards Bα)},

where Tx = {y ∈ X : (x, y) ∈ T }, and define Bλ =
⋂

α<λ Bα at limit ordinals.

Let TREE denote the set of trees on N, and let WF ⊆ TREE denote the set

of endless trees on N. A betweenness-preserving embedding of T ∈ TREE into

T is a map π : N → X such that

∀`, m, n ∈ N
(

` is T -between m, n ⇔ π(`) is T -between π(m), π(n)
)

.
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We write T � T to denote the existence of a betweenness-preserving embedding

of T into T . As T is Borel, the set

A = {T ∈ TREE : T � T }

is Σ1

1
. By the boundedness theorem for WF (see, for example, Theorem 31.2

of Kechris [7], but note that our notation is somewhat different), there exists

α < ω1 such that every T ∈ A is of rank less than α. Now, a simple induction

shows that if Bβ 6= ∅, then A contains a tree of rank β, and it follows that

Bα = ∅.

For each equivalence class [x]E of E, let α[x]E ≤ α be the least ordinal for

which Bα[x]E
∩ [x]E = ∅. As no ray through T intersects infinitely many points

of B, it follows that α[x]E is not a limit ordinal. Let β[x]E be the predecessor of

α[x]E , and observe that the definition of Bα ensures that

∀x ∈ X (1 ≤ |Bβ[x]E
∩ [x]E | ≤ 2),

from which it easily follows that E|B is smooth, the desired contradiction.

Remark 2.5: A transversal is a set B ⊆ X which intersects every equivalence

class of E in a single point. Every Borel equivalence relation which admits

a Borel transversal is smooth. Although the converse is false, it does hold

for countable Borel equivalence relations. It follows that the countable Borel

equivalence relations which admit endless graphings are exactly those which

have Borel transversals.

Remark 2.6: An equivalence relation E is treeable if it admits a treeing. By

a result of Hjorth [5] (see also Miller [11]), a treeable equivalence relation is

smooth exactly when it admits a Borel transversal. Thus, the treeable Borel

equivalence relations which admit endless graphings are exactly those which are

smooth.

Remark 2.7: Theorem 2.1 can be viewed as a generalization of Theorem 4.20

of K lopotowski-Nadkarni-Sarbadhikari-Srivastava [10], and yields an affirmative

answer to their Question 4.21, which essentially asks if the equivalence relation

induced by an endless locally countable Borel bipartite graph is necessarily

smooth.
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3. Spanning subtreeings

The following question arises from Lemma 2.4:

Question 3.1: Under which circumstances does a graphing of a countable

Borel equivalence relation admit a spanning subtreeing?

It is easily seen that there are graphings which do not admit spanning sub-

treeings, as there are non-treeable countable Borel equivalence relations, yet

every such equivalence relation admits a graphing. Although Question 3.1 re-

mains open, we do know that if the proper cycles of G are of bounded length,

then G has a spanning subtreeing. More generally, we have

Theorem 3.2 (Kechris-Miller): Suppose that X is a Polish space, E is a count-

able Borel equivalence relation on X , and n ∈ N. Then every graphing of E

admits a spanning subgraphing which has no cycles of length ≤ n.

Proof. Given a Borel graph G on X , set

[G ]≤n = {S ∈ [G ]<∞ : |S| ≤ n}.

The intersection graph induced by G is the graph G on [G ]<∞ given by

(S, T ) ∈ G ⇔ (S 6= T and S ∩ T 6= ∅).

A κ-coloring of a graph G on V is a function c : V → C such that

∀v, w ∈ V ((v, w) ∈ G ⇒ c(v) 6= c(w)),

where C is of cardinality κ. When V and C are Polish and c : V → C is Borel,

we call such a map a Borel κ-coloring. The Borel chromatic number of

G is the least κ for which G admits a Borel κ-coloring. The degree of v ∈ V is

degG(v) = |Gv|, and G is said to be bounded if supv∈V degG(v) is finite.

Lemma 3.3: Suppose that X is a Polish space, G is a bounded Borel graph on

X , G is the corresponding intersection graph, and n ∈ N. Then G|[G ]≤n has

finite Borel chromatic number.

Proof. As G is bounded, so is G|[G ]≤n, thus Proposition 4.6 of Kechris-Solecki-

Todorcevic [9] ensures that G|[G ]≤n has finite Borel chromatic number.

We can now verify a strengthening of the bounded case of the proposition:
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Lemma 3.4: Suppose that X is a Polish space, E is a countable Borel equiv-

alence relation on X , G is a bounded graphing of E, n ∈ N, and H ⊆ G is a

Borel graph with no cycles of length ≤ n. Then there is a spanning Borel graph

H ⊆ H ′ ⊆ G which has no cycles of length ≤ n.

Proof. Fix a Borel coloring c : [G ]≤n → {0, 1, . . . , k − 1} of G|[G ]≤n. We will

recursively define a decreasing sequence of spanning subgraphs Gi ⊆ G , for

i ≤ k, beginning with G0 = G . Given Gi, define Ci ⊆ [Gi]
≤n by

Ci = {S ∈ [Gi]
≤n : c(S) = i},

and fix a Borel map S 7→ GS which assigns to each S ∈ Ci a finite graph

GS ⊆ (Gi \H )|S such that (Gi \GS)|S is connected and has no cycles of length

≤ n. Define

Gi+1 = Gi \
⋃

S∈Ci

GS ,

noting that H ⊆ Gi+1 ⊆ G and Gi+1 is a spanning subgraph of Gi.

It follows that H ′ = Gk is a spanning subgraph of G which contains H .

Now suppose, towards a contradiction, that there is a cycle of length ≤ n in

H ′. Then there exists a finite set S ∈ [H ′]≤n which contains such a cycle. Put

i = c(S), and note that S ∈ [Gi]
≤n, thus GS was defined at stage i. It follows

that

H
′|S = (H ′ ∩ GS)|S ⊆ (Gi \ GS)|S,

which contradicts the fact that the latter set has no cycles of length ≤ n.

Now suppose that G is a graphing of E. By Feldman–Moore [3], G is the

union of the graphs of countably many Borel involutions. As a consequence,

there is an increasing sequence of bounded Borel graphs G0 ⊆ G1 ⊆ · · · whose

union is G . Put H0 = ∅, and given a graph Hk ⊆ Gk with no cycles of length

≤ n, apply Lemma 3.4 to find a spanning Borel subgraph Hk+1 ⊆ Gk, with no

cycles of length ≤ n, which contains Hk.

It now follows that H =
⋃

k∈N
Hk is a spanning subgraph of G that contains

no cycles of length ≤ n.

4. Single-ended graphings

Here we verify that the existence of a locally finite single-ended graphing says

little about the equivalence relation in question:
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Theorem 4.1: Suppose that X is a Polish space and E is an aperiodic count-

able Borel equivalence relation on X . Then E admits a locally finite single-ended

graphing.

Proof. We will obtain the theorem as a corollary of the following fact:

Lemma 4.2: There is a partition of X into Borel sets B0, B1, . . . and 2-to-1

Borel surjections fn : Bn → Bn+1 whose graphs are contained in E.

Proof. As the lemma is trivial when E is smooth, we can remove E-invariant

Borel sets on which E is smooth at countably many stages of the construction.

We begin by associating with each Borel set B ⊆ X an involution i ∈ [E]

whose support is B, off of an E-invariant Borel set on which E is smooth. By

Theorem 1 of Feldman–Moore [3], there are Borel involutions ik : X → X such

that

E =
⋃

k∈N

graph(ik).

Put i
(0)
B = ∅, recursively define partial functions i

(k+1)
B by

i
(k+1)
B (x) =















i
(k)
B (x) if x ∈ dom(i

(k)
B ),

ik(x) if x 6= ik(x) and x, ik(x) ∈ B \ dom(i
(k)
B ), and

undefined otherwise,

and define iB : X → X by

iB(x) =







i
(k)
B (x) if x ∈ dom(i

(k)
B ),

x if x 6∈
⋃

k∈N
dom(i

(k)
B ).

Noting that B \
⋃

k∈N
dom(i

(k)
B ) is a partial transversal of E, it follows that iB

is an involution with support B, off of an E-invariant Borel set on which E is

smooth.

Now we proceed to the main construction. Fix a Borel linear ordering ≤ of

X . We will recursively construct Borel sets An+1, Bn ⊆ X such that

∀n ∈ N (An+1 is the disjoint union of the sets Bn+1 and An+2 = iAn+1(Bn+1)).

After throwing out an E-invariant Borel set on which E is smooth, we can

assume that X = supp(iX). We begin by setting

B0 = {x ∈ X : x < iX(x)} and A1 = {x ∈ X : x > iX(x)}.
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Now suppose we have found Am+1, Bm ⊆ X , for m ≤ n, as well as

fm : Bm → Bm+1, for m < n.

By throwing out an E-invariant Borel set on which E is smooth, we can assume

that An+1 = supp(iAn+1). Now set

Bn+1 = {x ∈ X : x < iAn+1(x)} and An+2 = {x ∈ X : x > iAn+1(x)},

and define fn : Bn → Bn+1 by

fn(x) =







iAn
(x) if iAn

(x) ∈ Bn+1,

iAn+1 ◦ iAn
(x) otherwise.

Clearly fn is 2-to-1.

Sublemma 4.3: The set A = X \
⋃

n∈N
Bn is a partial transversal of E.

Proof. Suppose, towards a contradiction, that A is not a partial transversal,

and let k be the least natural number for which there are distinct y, z ∈ A

such that ik(y) = z. Then there exists n ∈ N such that all of the points of the

form ij(y), ij(z) distinct from y, z, for j < k, lie in B0 ∪ B1 ∪ · · · ∪ Bn. Then

iAn+1(y) = z, thus one of y, z lies in Bn+1, the desired contradiction.

It follows that, after throwing out one more E-invariant Borel set on which

E is smooth, the sets B0, B1, . . . and functions f0, f1, . . . are as desired.

We now proceed to the proof of the theorem. Fix Borel sets B0, B1, . . . and

functions fn : Bn → Bn+1 as in Lemma 4.2. By Theorem 3.12 of Jackson-

Kechris-Louveau [6] (which is due also to Gaboriau), there are locally finite

graphings Gn of E|Bn. Set f =
⋃

n∈N
fn, and define G on X by

G = graph(f±1) ∪
⋃

n∈N

Gn.

It is clear that G is locally finite, so it only remains to verify that for any

equivalence class C of E any two rays α, β through G |C are end equivalent.

Associated with each S ∈ [G |C]<∞ is the graph G
Ŝ

= G |(C \ S). We must

show that α, β are G
Ŝ

-connected. Note that the set S′ =
⋃

n∈N
f−n(S) is finite.

It follows that there exists n ∈ N such that α(n), β(n) 6∈ S′, and there exists

m ∈ N such that

∀` ≥ m (S′ ∩ B` = ∅).
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Fix ` ≥ m sufficiently large that α(n), β(n) ∈
⋃

k<` Bk, and find iterates

x, y ∈ B` of α(n), β(n) under f . Then α, x, y, β are G
Ŝ

-connected.

Remark 4.4: Although not every countable Borel equivalence relation admits a

bounded graphing, the above argument can be used to show that every aperiodic

countable Borel equivalence relation which admits a bounded graphing also

admits a bounded single-ended graphing.

As noted by Adams [1], the situation is much different for single-ended tree-

ings. We say that a treeing T of E is directable if there is a Borel f : X → X

such that T = graph(f±1). That is, E agrees with the tail equivalence

relation associated with f , given by

xEt(f)y ⇔ ∃m, n ∈ N (fm(x) = fn(y)).

It follows from §1 of Jackson-Kechris-Louveau [6] that Et(f) is hyperfinite.

Proposition 4.5: Suppose that X is a Polish space, E is a countable Borel

equivalence relation on X , T is a treeing of E, and there is an ET -invariant

Borel set B ⊆ [T ]∞ which selects a single end out of every connected compo-

nent of T . Then T is directable, thus E is hyperfinite.

Proof. Let f(x) be the unique T -neighbor of x which is the initial point of a ray

in B that avoids x. Then graph(f) is Σ1

1
, thus f is Borel. As T = graph(f±1),

the proposition follows.

Remark 4.6: There are treeings of hyperfinite equivalence relations for which

there is no Borel way of choosing one end. For instance, Adams (unpublished)

and others have pointed out that there are undirectable Borel forests of lines.

However, there is essentially only one undirectable Borel forest of lines, in the

sense that any two such forests are equivalent up to a natural analog of Nad-

karni’s [12] descriptive notion of Kakutani equivalence.

5. Selecting two ends

In this section, we describe those equivalence relations that admit graphings for

which there is a Borel way of selecting exactly two ends from each component.

Theorem 5.1: Suppose that X is a Polish space, E is a countable Borel equiva-

lence relation on X , G is a graphing of E, and there is a Borel way of selecting
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two ends from each G -component. Then there is a Borel E-complete section

B ⊆ X and a graphing L ⊆ G |B of E|B whose components are lines, and E is

hyperfinite.

Proof. Fix a Borel set B⊆ [G ]∞ which selects two ends from each G -component.

For each C ∈ X/E and S ∈ [G |C]<∞, set B
Ŝ

= B ∩ [G
Ŝ

]∞ and define

Φ = {S ∈ [G ]<∞ : ∃α, β ∈ B
Ŝ

(α, β are not G
Ŝ

-connected)}.

It is clear that Φ is Σ1

1
.
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Figure 2. If α, β are G
Ŝ

-connected, then so too are α′, β′.

Lemma 5.2: Suppose that S ∈ Φ and α, β ∈ B
Ŝ

are end inequivalent. Then

there is no path from α to β through G
Ŝ
.

Proof. Suppose, towards a contradiction, that there is a G
Ŝ

-path γ from α to

β. Fix rays α′ ∈ [α]EG
and β′ ∈ [β]EG

through G
Ŝ

which are not G
Ŝ

-connected,

let γα be a G
Ŝ

-path from α′ to α whose terminal point is the initial point of

γ, and let γβ be a G
Ŝ

-path from β to β′ whose initial point is the terminal

point of γ (see Figure 2). Then γαγγβ is a G
Ŝ

-path from α′ to β′, the desired

contradiction.

It follows that S ∈ Φ ⇔ ∀α, β ∈ B
Ŝ

(αEG β or α, β are not G
Ŝ

-connected),

thus Φ is Π1

1
, and therefore Borel.

Lemma 5.3: There is a maximal pairwise disjoint Borel set Ψ ⊆ Φ.

Proof. As in §3, we define G on [G ]<∞ by

(S, T ) ∈ G ⇔ S 6= T and S ∩ T 6= ∅.

Sublemma 5.4: There is a Borel coloring c : [G ]<∞ → N of G.
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Proof. Fix an increasing sequence of bounded Borel graphs Gn ⊆ G such that

G =
⋃

n∈N
Gn. By Lemma 3.3, there are Borel colorings cn : [Gn]≤n → N of

G|[Gn]≤n. Fix a bijection 〈·, ·〉 : N
2 → N and define c : [G ]<∞ → N by

c(S) = 〈n(S), cn(S)(S)〉 ,

where n(S) ∈ N is least such that S ∈ [Gn]≤n. Clearly c is a coloring of G.

Now fix a Borel coloring c : [G ]<∞ → N of G. Put Ψ0 = ∅, and define

Ψn+1 = Ψn ∪ {S ∈ Φ : c(S) = n and ∀T ∈ Ψn (S ∩ T = ∅)}.

It is straightforward to check that the set Ψ =
⋃

n∈N
Ψn is as desired.

Now fix a maximal pairwise disjoint Borel set Ψ ⊆ Φ, define E on Ψ by

SE T ⇔ ∃x ∈ X (S ∪ T ⊆ [x]E),

and let T be the set of pairs (S, T ) ∈ E , with S 6= T , such that there is G -path

from a point of S to a point of T which avoids all other points of
⋃

Ψ.

Lemma 5.5: T is a treeing of E whose vertices each have at most two neighbors.

Proof. For each C ∈ X/E, set TC = T|C and ΨC = {S ∈ Ψ : S ⊆ C}. We

must show that each TC is a tree whose vertices have at most two neighbors.

� r
γα

α ��
��

S

��
��

T

γ

-r
γβ

βr r r

Figure 3. If T is not G
Ŝ

-connected to α or β, it cannot discon-

nect them.

The following sublemma implies that for each S ∈ ΨC , every T-neighbor of S

lies in one of the two connected components of G
Ŝ

which contains a ray in B
Ŝ

:

Sublemma 5.6: Suppose that S, T ∈ ΨC and S 6= T . Then T is G
Ŝ
-connected

to a ray in B
Ŝ
.
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Proof. Suppose, towards a contradiction, that T is not G
Ŝ

-connected to a ray

in B
Ŝ

. Fix end-inequivalent rays α, β ∈ B
Ŝ

, let γα be a G -path of minimal

length from α to S, let γβ be a G -path of minimal length from S to β, and let γ

be a G -path from the terminal point of γα to the initial point of γβ (see Figure

3). Then γαγγβ is a G
T̂

-path from α to β, contradicting Lemma 5.2.

The following sublemma implies that each element of ΨC has at most two

TC -neighbors:

Sublemma 5.7: Suppose that S, T, U ∈ ΨC are distinct and T is G
Ŝ
-connected

to U . Then exactly one of the following holds:

1. Every path from S to T goes through U .

2. Every path from S to U goes through T .

Proof. Fix end-inequivalent rays α, β ∈ B
Ŝ

which avoid T ∪ U . Sublemma 5.6

ensures that, after reversing the roles of α, β if necessary, we can assume that

T and U are both G
Ŝ

-connected to β.

� r
γS,α

α ��
��

S

γS

γT,S

��
��

T

��
��

U

γT γβ,T r - βr r
r r

Figure 4. If γT,S avoids U , then α, β are G
Û

-connected.

Fix a path γβ,T of minimal length from β to T ∪ U . By reversing the roles

of T and U if necessary, we can assume that γβ,T avoids U . Now suppose,

towards a contradiction, that there is a G -path from T to S which avoids U .

Fix such a path γT,S of minimal length, let γT be a G -path through T from

the terminal point of γβ,T to the initial point of γT,S , and let γS,α be a G -path

of minimal length from the terminal point of γT,S to the initial point of α (see
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Figure 4). Then γβ,T γT γT,SγS,α is a G
Û

-path from β to α, which contradicts

Lemma 5.2.

It easily follows that TC is connected and acyclic, and the lemma follows.

Now define A = {x ∈ X : ∀S ∈ Ψ[x]E (S has two T -neighbors)}. It follows

from the Lusin–Novikov uniformization theorem that A is Borel.

Lemma 5.8: There is a Borel complete section B ⊆ X \A for E|(X \A) and a

Borel graphing L ⊆ G |(X \ A) of E|B whose connected components are lines.

Proof. For each E-class C ⊆ X \ A, the set of elements of ΨC which have

exactly one T-neighbor is either of cardinality 1 or 2. It follows that E|(X \A)

is smooth, from which the lemma easily follows.

Lemma 5.9: There is a Borel complete section B ⊆ A for E|B and a Borel

graphing L ⊆ G |A of E|B whose connected components are lines.

Proof. Fix a Borel function which associates with each pair (S, T ) ∈ T|A a G -

path γS,T of minimal length connecting S, T , such that γS,T = γT,S . Fix also a

Borel function which associates with each S ∈ ΨC a G -path γS through S whose

terminal points agree with those of γS,T , γS,U , where T, U are the T-neighbors

of G. It is clear that the forest L which consists of all edges of paths of the

form γS , γS,T , for (S, T ) ∈ T|A, is as desired.

It follows that there is a Borel E-complete section B ⊆ X and a graphing

L ⊆ G |B of E|B whose connected components are lines. This then implies that

E|B is hyperfinite (see, for example, Remark 6.8 of Kechris–Miller [8]).

Remark 5.10: Lemma 3.19 of Jackson-Kechris-Louveau [6], which itself builds

on an argument of Adams [1], provides a measure-theoretic partial converse for

Theorem 5.1. It implies that if µ is a probability measure on X , E is hyperfinite

and T is a treeing of E, then there is a µ-measurable way of selecting one or two

ends from each connected component of T . In fact, this is true for graphings

as well, as can be easily seen via Lemma 2.4.

Remark 5.11: There are treeings T of hyperfinite equivalence relations for

which it is impossible to select one or two ends from each connected component

of T . However, there is essentially only one example, in the sense that any two
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such forests are equivalent up to a natural analog of Nadkarni’s [12] descriptive

notion of Kakutani equivalence.

6. Selecting finitely many ends

Here we consider Borel graphs for which there is a Borel way of selecting a finite

set of at least three ends from each component. We note first the following

general fact, which is of interest in its own right:

Proposition 6.1: Suppose that X is a Polish space, E is a countable Borel

equivalence relation on X , and G is a graphing of E. Then there is a Borel

EG -complete section A ⊆ [G ]∞ such that EG |A is countable.

Proof. Given S ∈ [G ]<∞ and α ∈ [G ]∞ which lie in the same E-class, we say

that α eventually settles into a connected component C of G
Ŝ

if

∃n ∈ N ∀m ≥ n (α(m) ∈ C).

We use C(α, S) to denote this connected component.

By repeated use of the Lusin–Novikov uniformization theorem, we can find

Borel functions Sn : X → [G ]<∞ such that

∅ = S0(x) ⊆ S1(x) ⊆ · · · and [x]E =
⋃

n∈N

Sn(x),

for all x ∈ X . Given x ∈ X and α ∈ [G |[x]E ]∞, let γ
(x,α)
0 be the one-point path

at x, and given γ
(x,α)
n , let γ

(x,α)
n+1 be a G -path of minimal length which begins

at the terminal point of the previous path, ends in C(α, Sn+1(x)), and avoids

Sn(x). By again making repeated use of the Lusin-Novikov uniformization

theorem, we can ensure that the maps (x, α) 7→ γ
(x,α)
n are Borel, thus so is the

map

(x, α) 7→ βx,α = γ
(x,α)
0 γ

(x,α)
1 . . . .

As βx,α ∈ [α]EG
and αEG α′ ⇒ βx,α = βx,α′ , it follows that the set

A = {α ∈ [G ]∞ : α = βα(0),α}

is as desired.

We are now ready for the main result of this section.
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Theorem 6.2: Suppose that X is a Polish space, E is a countable Borel equiv-

alence relation on X , G is a graphing of E, and B ⊆ [G ]∞ is an EG -invariant

Borel set which selects a finite set of at least three ends from each G -component.

Then E is smooth.

Proof. Fix a Borel A ⊆ [G ]∞ as in Proposition 6.1, and define Φ ⊆ [G ]<∞ by

S ∈ Φ ⇔ ∀α, β ∈ A ∩ B ∩ [G |[S]E ]∞ (αEG β or C(α, S) 6= C(β, S)).

As each set of the form A ∩[G |[S]E ]∞ is countable, it follows that Φ is Borel. By

Lemma 5.3, there is a maximal pairwise disjoint Borel set Ψ ⊆ Φ. Note that the

maximality of Ψ ensures that for each x ∈ X , there exists S ∈ [G |[x]E ]<∞ ∩ Ψ.

Moreover, since Ψ is pairwise disjoint and B contains at least three ends from

the G -component of x, it follows that there is exactly one such S, so E is

smooth.
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